Analysis of sequential physiology data with weighted naive Bayes
نویسنده
چکیده
In this project, I describe how I address the ICML 2004 Physiological Data Modeling Contest. For the gender prediction task, I compressed the large entry-based dataset to small session-based dataset and manually devised 90 features using a histogram method. Weighted naive Bayes (WNB) which is an extension of naive Bayes was applied and Markov Chain Monte Carlo was combined to solve the weight updating problem. The performance between the WNB and naive Bayes was assessed. Also explicit feature selection based on fisher’s discriminant ratio was applied for the newly devised features and the contribution for the subset of features on the accuracy was assessed. My experiment showed that WNB trained to produce much higher test accuracy up to 89.2% compared with 67.5% that naive Bayes can achieve.
منابع مشابه
Diagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)
Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...
متن کاملAttribute Weighting via Differential Evolution Algorithm for Attribute Weighted Naive Bayes (WNB)
The naive Bayes (NB) is a popular classification technique for data mining and machine learning, which is based on the attribute independence assumption. Researchers have proposed out many effective methods to improve the performance of NB by lowering its primary weakness---the assumption that attributes are independent given the class, such as backwards sequential elimination method, lazy elim...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملWeighted Naive Bayes Classifier: A Predictive Model for Breast Cancer Detection
In this paper investigation of the performance criterion of a machine learning tool, Naive Bayes Classifier with a new weighted approach in classifying breast cancer is done . Naive Bayes is one of the most effective classification algorithms. In many decision making system, ranking performance is an interesting and desirable concept than just classification. So to extend traditional Naive Baye...
متن کاملWeighted Proportional k-Interval Discretization for Naive-Bayes Classifiers
The use of different discretization techniques can be expected to affect the classification bias and variance of naive-Bayes classifiers. We call such an effect discretization bias and variance. Proportional kinterval discretization (PKID) tunes discretization bias and variance by adjusting discretized interval size and number proportional to the number of training instances. Theoretical analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008